Jump to content

Main Page

From Computer Science Knowledge Base

Table of Contents

1.0 Introduction to Computer Science

1.1 What is Computer Science?

1.2 History of Computing

1.3 Key Figures in Computer Science

1.4 Branches of Computer Science

2.0 Foundational Concepts

2.1 Data Representation

2.2 Boolean Algebra & Logic Gates

2.3 Algorithms & Pseudocode

2.4 Computational Thinking

  • 2.4.1 Decomposition
  • 2.4.2 Pattern Recognition
  • 2.4.3 Abstraction
  • 2.4.4 Algorithms

3.0 Programming Fundamentals

3.1 Programming Paradigms

  • 3.1.1 Procedural Programming
  • 3.1.2 Object-Oriented Programming (OOP) - Basic Concepts
  • 3.1.3 Functional Programming (Basic Concepts)

3.2 Data Types & Variables

  • 3.2.1 Primitive Data Types (Integers, Floats, Booleans, Characters)
  • 3.2.2 Reference Data Types (Strings, Objects)
  • 3.2.3 Variable Declaration and Initialization

3.3 Control Structures

  • 3.3.1 Conditional Statements (if, else if, else, switch)
  • 3.3.2 Looping Constructs (for, while, do-while)

3.4 Functions/Methods

  • 3.4.1 Definition and Purpose
  • 3.4.2 Parameters and Return Values
  • 3.4.3 Scope

3.5 Basic Data Structures

  • 3.5.1 Arrays (One-dimensional, Multi-dimensional)
  • 3.5.2 Strings (Manipulation, Common Operations)

3.6 Error Handling & Debugging

  • 3.6.1 Types of Errors (Syntax, Runtime, Logic)
  • 3.6.2 Exception Handling (try-catch)
  • 3.6.3 Debugging Techniques and Tools

4.0 Data Structures Algorithms (DSA)

4.1 Data Structures

  • 4.1.1 Linear Data Structures:
    • 4.1.1.1 Arrays (Fixed-size, Dynamic Arrays)
    • 4.1.1.2 Linked Lists (Singly, Doubly, Circular)
    • 4.1.1.3 Stacks (LIFO)
    • 4.1.1.4 Queues (FIFO, Priority Queues)
  • 4.1.2 Non-Linear Data Structures:
    • 4.1.2.1 Trees (Binary Trees, Binary Search Trees, AVL Trees, Red-Black Trees)
    • 4.1.2.2 Graphs (Directed, Undirected, Weighted)
    • 4.1.2.3 Hash Tables (Hashing Functions, Collision Resolution)
    • 4.1.2.4 Heaps (Min-Heap, Max-Heap)
  • 4.2 Algorithms
    • Sorting Algorithms:
      • Bubble Sort, Selection Sort, Insertion Sort
      • Merge Sort, Quick Sort (Divide and Conquer)
      • Heap Sort, Radix Sort
    • Searching Algorithms:
      • Linear Search
      • Binary Search
    • Graph Algorithms:
      • Breadth-First Search (BFS)
      • Depth-First Search (DFS)
      • Dijkstra's Algorithm (Shortest Path)
      • Minimum Spanning Trees (Prim's, Kruskal's)
    • Dynamic Programming:
      • Memoization, Tabulation
      • Common DP Problems (Fibonacci, Knapsack)
    • Recursion:
      • Base Cases, Recursive Steps
      • Tail Recursion
    • Greedy Algorithms
  • V. Computer Architecture & Organization
    • 5.1 CPU Components
      • Arithmetic Logic Unit (ALU)
      • Control Unit (CU)
      • Registers
      • Instruction Cycle (Fetch, Decode, Execute, Store)
    • 5.2 Memory Hierarchy
      • Cache Memory (L1, L2, L3)
      • RAM (Random Access Memory)
      • ROM (Read-Only Memory)
      • Virtual Memory (Basic Concept)
    • 5.3 Input/Output Systems
      • I/O Devices and Controllers
      • Polling, Interrupts, DMA
    • 5.4 Instruction Sets
      • RISC vs. CISC
    • 5.5 Assembly Language (Basic Concepts)VI. Operating Systems (OS)
    • 6.1 Role and Functions of an OS
      • Resource Management, Process Management, Memory Management, File Management
    • 6.2 Process Management
      • Processes vs. Threads
      • Process States
      • CPU Scheduling Algorithms (FCFS, SJF, Priority, Round Robin)
      • Inter-Process Communication (IPC)
      • Synchronization (Semaphores, Mutexes)
    • 6.3 Memory Management
      • Paging, Segmentation
      • Virtual Memory
      • Page Replacement Algorithms
    • 6.4 File Systems
      • File Organization, Directory Structures
      • File Allocation Methods
    • 6.5 Concurrency & Deadlock
      • Conditions for Deadlock
      • Deadlock Prevention, Avoidance, Detection, Recovery VII. Networking & Internet
    • 7.1 Network Models
      • OSI Model (7 Layers)
      • TCP/IP Model (4/5 Layers)
    • 7.2 Protocols
      • HTTP/HTTPS, FTP, SMTP, POP3, IMAP
      • TCP (Reliable, Connection-Oriented)
      • UDP (Unreliable, Connectionless)
      • IP (Internet Protocol)
      • DNS (Domain Name System)
    • 7.3 Network Topologies
      • Bus, Star, Ring, Mesh
    • 7.4 Web Technologies (Basic Overview)
      • HTML, CSS, JavaScript (Client-side)
      • Web Servers, APIs VIII. Databases
    • 8.1 Database Types
      • Relational Databases (SQL)
      • NoSQL Databases (Key-Value, Document, Column-Family, Graph)
    • 8.2 Relational Database Concepts
      • Tables, Rows, Columns
      • Primary Keys, Foreign Keys
      • Relationships (One-to-One, One-to-Many, Many-to-Many)
    • 8.3 SQL (Structured Query Language)
      • CRUD Operations (SELECT, INSERT, UPDATE, DELETE)
      • JOINs, Subqueries
      • Data Definition Language (DDL)
      • Data Manipulation Language (DML)
    • 8.4 Database Design
      • Normalization (1NF, 2NF, 3NF, BCNF)
      • Entity-Relationship (ER) Diagrams
    • 8.5 Database Management Systems (DBMS)
      • Examples (MySQL, PostgreSQL, Oracle, SQL Server) IX. Software Engineering
    • 9.1 Software Development Life Cycle (SDLC)
      • Phases (Requirements, Design, Implementation, Testing, Deployment, Maintenance)
      • Models (Waterfall, Iterative, Spiral)
    • 9.2 Agile Methodologies
      • Scrum, Kanban
      • User Stories, Sprints
    • 9.3 Version Control
      • Git (Basic Commands: clone, add, commit, push, pull, branch, merge)
      • GitHub/GitLab/Bitbucket (Remote Repositories)
    • 9.4 Software Testing
      • Unit Testing, Integration Testing, System Testing, Acceptance Testing
      • Test-Driven Development (TDD)
    • 9.5 Design Patterns
      • Creational (Singleton, Factory)
      • Structural (Adapter, Decorator)
      • Behavioral (Observer, Strategy) X. Artificial Intelligence (AI) & Machine Learning (ML)
    • 10.1 Introduction to AI
      • Strong AI vs. Weak AI
      • Applications of AI
    • 10.2 Types of Machine Learning
      • Supervised Learning (Regression, Classification)
      • Unsupervised Learning (Clustering, Dimensionality Reduction)
      • Reinforcement Learning
    • 10.3 Common ML Algorithms
      • Linear Regression, Logistic Regression
      • Decision Trees, Random Forests
      • Support Vector Machines (SVM)
      • K-Means Clustering
    • 10.4 Neural Networks & Deep Learning (Basic Concepts)
      • Perceptrons, Layers
      • Activation Functions
      • Backpropagation (High-level)
      • Convolutional Neural Networks (CNNs)
      • Recurrent Neural Networks (RNNs)
    • 10.5 Natural Language Processing (NLP) / Computer Vision (CV)
      • Basic tasks and applications XI. Cybersecurity
    • 11.1 Fundamentals of Security
      • Confidentiality, Integrity, Availability (CIA Triad)
      • Authentication, Authorization, Accounting (AAA)
    • 11.2 Common Threats & Attacks
      • Malware (Viruses, Worms, Ransomware)
      • Phishing, Social Engineering
      • Denial of Service (DoS) / Distributed Denial of Service (DDoS)
      • Man-in-the-Middle Attacks
    • 11.3 Cryptography
      • Symmetric vs. Asymmetric Encryption
      • Hashing
      • Digital Signatures
    • 11.4 Network Security
      • Firewalls, Intrusion Detection/Prevention Systems (IDS/IPS)
      • Virtual Private Networks (VPNs)
    • 11.5 Web Security
      • Cross-Site Scripting (XSS)
      • SQL Injection
      • Cross-Site Request Forgery (CSRF) XII. Theoretical Computer Science
    • 12.1 Automata Theory
      • Finite Automata (DFAs, NFAs)
      • Regular Expressions
      • Context-Free Grammars & Pushdown Automata
    • 12.2 Computability Theory
      • Turing Machines
      • Church-Turing Thesis
      • Halting Problem (Undecidability)
    • 12.3 Complexity Theory
      • Time and Space Complexity (Big O Notation revisited)
      • P, NP, NP-Complete, NP-Hard XIII. Emerging Topics & Future Trends
    • 13.1 Quantum Computing
      • Basic Principles (Superposition, Entanglement)
      • Qubits, Quantum Gates
    • 13.2 Blockchain & Distributed Ledger Technologies
      • Decentralization, Cryptocurrencies
      • Smart Contracts
    • 13.3 Cloud Computing
      • IaaS, PaaS, SaaS
      • Public, Private, Hybrid Clouds
    • 13.4 Big Data
      • Volume, Velocity, Variety
      • Hadoop, Spark (Basic Concepts)
    • 13.5 Ethical AI & Societal Impact
      • Bias in AI, Privacy Concerns
      • AI Safety and Governance






Consult the User's Guide for information on using the wiki software.

Getting started